Linear quadratic optimal boundary control of a diffusion-convection-reaction system
نویسنده
چکیده
In this work, the boundary control of a distributed parameter system (DPS) modeled by parabolic partial differential equations with spatially varying coefficients is studied. An infinite dimensional state space setting is formulated and an exact transformation of the boundary actuation is realized to obtain an evolutionary model. The evolutionary model is used for subsequent linear quadratic regulator synthesis which incorporates the spatially varying coefficients of the underlying set of the PDEs. The formulated LQR controller is applied to the nonlinear model of the system and its performance is studied.
منابع مشابه
Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملChemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study
In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...
متن کاملParametric Sensitivity Analysis for Optimal Boundary Control of a 3D Reaction-Diffusion System
A boundary optimal control problem for an instationary nonlinear reactiondiffusion equation system in three spatial dimensions is presented. The control is subject to pointwise control constraints and a penalized integral constraint. Under a coercivity condition on the Hessian of the Lagrange function, an optimal solution is shown to be a directionally differentiable function of perturbation pa...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کامل